Preparation and Characterization of New Misfit Layer Selenides $SnVSe_3$ and $SnNb_2Se_5$

Lourdes HERNAN, Julián MORALES, Jayasree PATTANAYAK, and José L. TIRADO

Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias,

Universidad de Córdoba, 14004 Córdoba, Spain

New "SnVSe $_3$ " and "SnNb $_2$ Se $_5$ " phases have been synthesized from the corresponding elements. The structure of these compounds may be described as a mixed sandwiched layered type where one [SnSe] slab alternates with one [VSe $_2$] slab for SnVSe $_3$ and with two [NbSe $_2$] slabs for SnNb $_2$ Se $_5$.

Crystal structure and electrical and magnetic properties of ternary chalcogenides with misfit layer structures have attracted much attention in the last few years. $^{1-4)}$ In addition, misfit layer compounds may be appropriate hosts for intercalation reactions. $^{1)}$ Two types of stoichiometry and stacking sequences have been described for misfit layer sulfide compounds, namely MM'S₃ and MM'₂S₅. The former consists of a stacking sequence of C (MS, NaCl-related slab) and H (M'S₂, CdI₂-related slab) sublattices, while the ...HHC... sequence is found for 1:2:5 phases. $^{5)}$ For mixed selenides, several 1:1:3 phases have been reported such as SnNbSe₃ and BiMSe₃ (M: Ti, V, Nb, Ta). Oosawa et al. $^{8)}$ preliminary reported that 1:2:5 type selenide (BiNb₂Se₅) is formed and all the 1:2:5 type chalcogenides behave as hosts for intercalation. In this communication, new "SnNbSe₅" and "SnVSe₃" phases are described.

Samples with nominal compositions "SnVSe $_3$ " and "SnNb $_2$ Se $_5$ " were prepared from the elements in the desired proportions by heating the pelleted mixtures in evacuated silica ampoules. For the SnNb $_2$ Se $_5$ sample, heating rate was 1°/min, the temperature was maintained at 300 °C for 1 day, and at 900 °C for 7 days. For SnVSe $_3$, the temperatures were 500 °C for 1 day and 800 °C for 7 days, with heating rates of 2°/min. Both compositions led to polycrystalline

black powders with luster.

Powder X-ray diffraction patterns were obtained with a Siemens D500 diffractometer, equipped with graphite-monochromatized $\text{CuK}\alpha$ radiation. Electron diffraction patterns were obtained with a JEOL 200CX microscope. Samples were ground in an agate mortar, dispersed in acetone and placed on carbon-covered copper grids for their examination.

The X-ray diffraction pattern of $SnVSe_3$ and $SnNb_2Se_5$ showed several intense lines, which are multiple order reflections of the basal planes, and few weak lines. The observed and calculated d-spacings and relative intensities for each (001) reflection are shown in Table 1. From these values,

Table 1. Powder X-ray diffraction line spacings and observed intensities

			SnVSe ₃			SnNb_Se		
h	k	1	d obsd	d calcd	I/I _o	d obsd	d calcd	I/I _o
0	0	2	12.39	12.10	4	_	-	_
0	0	4	6.04	6.05	33	9.28	9.26 ₂	6 .
0	0	6	4.02	4.03	8	6. 15	6. 17 5	95
0	0	8	3.01	3.02	100	4.63	4.63	11
0	0	10	2.40	2.42	11	3.71	3.705	14
0	0	12	2.00	2.01	6	3.08	3.08	100
0	0	14	1.72	1.72,	4	2.64,	2.64	26
0	0	16	1.50	1.51	18	2.31,	2.31 ₅	24
0	0	18	- '	-	-	2.06	2.05	21
0	0	20	-	-	-	1.85	1.85	7
0	0	22	-	_	_	1.68	1.68	9
0	0	24	-	-	-	1.54	1.543	42

the calculated c unit cell parameter was 24.20 $_4$ and 37.05 $_1$ Å for SnVSe $_3$ and SnNb $_2$ Se $_5$, respectively. These values are consistent with a stacking sequence as follows: for SnVSe $_3$, each repeating unit along the [001] direction is formed by two C and two H sublattice slabs following an HCHC sequence; for SnNb $_2$ Se $_5$, two C and four H slabs form the HHCHHC unit. This pattern is characteristic of the 1:1:3 and 1:2:5 mixed chalcogenide phases already described. $^{1-5)}$

Figure 1 shows the electron diffraction patterns of $SnVSe_3$ and $SnNb_2Se_5$

platelike particles with the incident beam parallel to [001]. The patterns shown in Fig. 1 a and b are characteristic of a superposition of an hexagonal pattern due to the VSe₂ and NbSe₂ pseudohexagonal sublattice H layers and a square pattern due to the SnSe pseudocubic C sublattice^{9, 10)} with a single relative orientation. This zone axis electron diffraction pattern does not allow the distinction of each structural type (HHC or HC). For SnNb₂Se₅, only few distorted regions showed a pattern like that shown in Fig. 1 c. This intricate pattern has also been found in other misfit layer chalcogenides¹⁰⁾ and can be interpreted in terms of two orientations of the NbSe₂ layers differing by 30°.

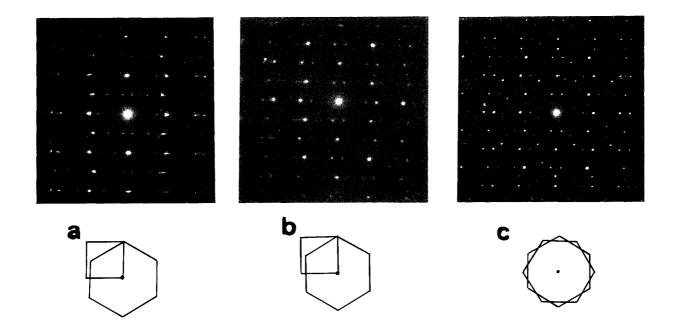


Fig. 1. Electron diffraction patterns with incident beam parallel to [001] of platelike particles of a) "SnVSe₃", b) "SnNb₂Se₅" with single orientations of H and C sublattices, c) "SnNb₂Se₅" with two orientations of H sublattice differing by 30°.

Finally, the possibility of lithium intercalation in these phases has been examined. The preliminary results were obtained by the reaction with an excess of 1.6 M n-butyl lithium solution in hexane under an argon atmosphere. The X-ray diffraction pattern of the lithiated powder SnNb₂Se₅ sample shows significant changes in the c parameter which increases to 37.84₀ Å after including 0.04 Li atoms per formula unit. On the contrary, the intercalation

of 0.04 Li atoms per SnVSe_3 unit leads to negligible changes in unit cell parameters. The fact that lithium intercalation induced little changes in the unit cell parameter was related with the compensating effects of Li^+ size, the electrostatic attractions between negatively-charged slabs and Li^+ , and the repulsion between the slabs. ¹¹⁾ The differences in the behaviour of SnVSe_3 and $\mathrm{SnNb}_2\mathrm{Se}_5$ may be related with the presence of consecutive H layers separated by a wide Van der Waals gap in the latter phase. Similar differences were found in the intercalation of lithium in PbTiS_3 and $\mathrm{PbTi}_2\mathrm{S}_5$. Further work related to this field is under progress.

The authors wish to express their acknowledgement to Fundación Ramón Areces, CICYT (MAT88-0708) and PFCTEE (J. Pattanayak) for financial support.

References

- 1) G.A. Wiegers, A. Meetsma, R.J. Haange, and J.L. Boer, Solid State Ionics, 32/33, 183 (1989).
- 2) M. Onoda, K. Kato, Y. Gotoh, and Y. Oosawa, Acta Crystallogr., Sect. B, 46, 487 (1990).
- 3) Y. Gotoh, M. Goto, K. Kawaguchi, Y. Oosawa, and M. Onoda, *Mat. Res. Bull.*, **25**, 307 (1990).
- 4) Y. Oosawa, Y. Gotoh, and M. Onoda, Chem. Lett., 1989, 523.
- 5) A. Meerschaut, L. Guemas, C. Auriel, and J. Rouxel, Eur. J. Solid State Inorg. Chem., 27, 557 (1990).
- 6) M.H. van Maaren, Phys. Lett. A 40, 353 (1972).
- 7) Y. Gotoh, M. Onoda, K. Uchida, Y. Tanaka, T. Iida, H. Hayakawa, and Y. Oosawa, Chem. Lett., 1989, 1559.
- 8) Y. Oosawa, Y. Gotoh, and M. Onoda, Chem. Lett., 1989, 1563.
- 9) S. Kuypers, J. van Tendeloo, J. van Landuyt, and S. Amelinckx, Acta Crystallogr., Sect. A, 45, 291 (1989).
- 10) S. Kuypers, J. van Landuyt, and S. Amelinckx, J. Solid State Chem., 86, 212 (1990).
- 11) J. Rouxel, Chemica Scripta, 28, 33 (1988).
- 12) L. Hernán, P. Lavela, J. Morales, J. Pattanayak, and J.L. Tirado. *Mat. Res. Bull.* In press.

(Received July 23, 1991)